Tuesday, April 1, 2008

LOOKING IN THE OPAQUE

Amber inclusions have always fascinated me, even before Jurassic Park.  The way science is progressing, advancements made so rapidly now.  Each major technological step is followed quicker by the next, think of the first natural rock to be used as a tool, the the jump to being able to chip a cutting edge, then to making knives and arrows, from the stone age to the bronze, from the bronze to the iron,  from iron to steel,  from steel to Techno, and now it seems something new is added each day or week instead of waiting hundreds of years.  Sometimes it seems too obvious that our advancements have already out paced our ability to use them wisely. . . Enjoy the read Dear Friends, I found it fascinating.  John  (The background picture is a piece of Baltic Amber, I had to change the background, that prehistoric tick in amber was freaking me out!!)

 

Secret 'dino bugs' revealed

By Jonathan Amos
Science reporter, BBC News

The X-ray techniques produce images with remarkable detail

It is like a magic trick - at first there is nothing and then it appears: a tiny insect unseen by any eye for 100 million years.

We are with Paul Tafforeau who is scrolling through images on his computer.

His pictures have been produced by a colossal X-ray machine that can illuminate the insides of small lumps of clouded amber (fossil tree resin).

As he plays with the settings, what starts out as grey nothingness suddenly becomes the unmistakable outline of a "wee beastie".

Who knows? This little creature could once have buzzed a dinosaur. It's certainly the right age.

Tafforeau is a palaeontologist. But whilst others of his profession will be in the dirt with a rock hammer and trowel, you'll find him at the end of one of the most remarkable "cameras" in the world.

The European Synchrotron Radiation Facility (ESRF) in Grenoble, France, produces an intense, high-energy light that can pierce just about any material, revealing its inner structure.

How the insects are illuminated

Tafforeau and colleague Malvina Lak have put kilos of opaque amber chunks in the way of this beam and have found a treasure trove of ancient organisms.

From more than 600 blocks, they have identified nearly 360 fossil animals. Wasps, flies, ants - even spiders. There are also small fragments of plant material. All of it caught up in the sticky goo of some prehistoric tree and then locked away until modern science provided the key.

Everything comes from the Charentes region in south-western France.

Electrons are fired into a linac, or straight accelerator. They're boosted in a small ring before entering the storage ring. The superfast particles are corralled by a train of magnets. Energy lost by turning electrons emerges as intense light (X-rays).

 

 

 

 

Most of the organisms are minuscule. For example, one of the discovered mites measures just 0.8mm across. A fossil wasp is large by comparison at 4mm in length.

"The small size of the organisms is probably due to the fact that bigger animals would be able to escape from the resin before getting stuck, whereas little ones would be captured more easily," explains Malvina Lak, who is affiliated to the University of Rennes.

You can tell the ones that were trapped alive as opposed to the ones which must have been dead and blown into the goo. The live bugs were frozen with legs flailing. The dead, on the other hand, were encapsulated with legs curled up underneath them. (kind of gives a whole new view of that classic Vincent Price, THE FLY scene, where the fly/human, stuck in the web screams in a very high voice: "Help me!!!! Help me!!!!!!"--John).

 

The 850m-circumference ring has 32 magnet clusters, or cells. Electrons turned by plain magnets produce 'standard' X-rays. Particles 'wiggled' at undulator magnets emit stronger X-rays. X-rays can't turn with electrons and head straight down beamlines.

 

 

The ESRF synchrotron is using a quick-fire process to screen the ambers. First, block batches are loaded into the beamline and imaged using a high-contrast, high-resolution form of X-ray radiography.

This identifies the ambers that have interesting inclusions. These then undergo another session in the beamline which builds up 3D images of the trapped insects.

 

 

Experiment 'hutches' receive the most intense X-rays in Europe. The light probes materials on the atomic and molecular scale. Robots can place many samples in the beam for rapid science. ESRF data leads to new materials, drugs, electronics, etc.

(Is it just me, but there seems to be something very wrong with having the control cabin at the end of the x-Ray beam!! --John)

 

The ESRF synchrotron is using a quick-fire process to screen the ambers. First, block batches are loaded into the beamline and imaged using a high-contrast, high-resolution form of X-ray radiography.

This identifies the ambers that have interesting inclusions. These then undergo another session in the beamline which builds up 3D images of the trapped insects.

"Micro-tomography is based on radiography but instead of a single picture, we are taking pictures during rotation of the sample," explains Dr Tafforeau.

"For a complete rotation, we will take more than 1,000 radiographs - and from all these radiographs, we can reconstruct virtual slices; and after using a 3D processing tool, we 'extract' the specimen from the amber."

 

 

A finished 3-D plastic model.

 

This virtual insect can be spun around on the computer screen. With resolution on the micron scale (millionths of a metre), fine anatomical details jump out.

But here's the really neat part. All that electronic information can be fed to a 3D plastic printer to make a physical model. A bug that in reality is less than a millimetre long and hidden inside a resin block then becomes a 30cm-long facsimile you can hold in your hand.

"In some ways it is better than having the real animal," says Dr Tafforeau, as he turns a giant plastic wasp in his palms.

"If you think about it, the real wasp is 4mm and to see it you would need a microscope; and if it's in opaque amber you need a synchrotron. Once it's done as a plastic print, you can see what you want."

The work is providing new insights into the ecology of Charantes in the Mesozoic Era. Many of the newly identified bugs are water-related: they would have lived around an esturine environment

The translucent ambers gathered from the region had already indicated this; but the investigation of the opaque ambers at the ESRF has now strengthened this interpretation.

Paul Tafforeau, Malvina Lak and colleagues have high hopes for the techniques they are developing in the synchrotron.

In a paper to be published in the scientific journal Microscopy and Microanalysis, they suggest their work could form the basis of an alternative means of cataloguing new species trapped in amber.

 

 

The 850m-circumference synchrotron dominates the landscape
 
 
 
 
 
 
 
 
 
 
 
 
 

Traditionally, every recorded organism will have a reference specimen, or holotype, deposited in a museum.

This specimen will be made available to any scientist who wishes to examine it or compare it with further discoveries.

But this presents a unique problem for insects caught in opaque amber. How do you deposit a reference you cannot see?

The ESRF team proposes that in future such holotypes be composed of the amber block, all the electronic data from the synchrotron and the 3D plastic print.

The type of work undertaken by Tafforeau, Lak and colleagues can only be done in a synchrotron; but it is time-consuming work.

Long-term, the ESRF hopes to upgrade its facilities. The improvements its plans are likely to open up many new avenues for "virtual palaeontology".

At the moment, the X-ray beam is no more than 4cm wide. An enhanced ESRF will be capable of producing a beam 25cm across - wide enough even to image the entire skull of a fossil human.

"We needed four days to scan 10kg of amber. With a larger beam and a wide-field detector, in four days we would be able to scan perhaps 100kg of amber; and with even better results," said Dr Tafforeau.

20 comments:

  1. mr-know-it-all....grins,

    thanks for the info...

    ReplyDelete
  2. LOL Stuck on You...glad they aren't stuck on ME, very well put together blog...interesting stuff...although I am not fond of bugs *grin*

    ReplyDelete
  3. What a mind!!! And how you got from resin to "Stuck On You" is amazing ~ perfect, but amazing!!!
    I agree, it is really interesting. So neat that they can make a 3D image of them!!!
    Love the new back ground too..... but it may cause night mares tonight ~ lol.
    Good blog, John ~ enjoyed! (Love the music too!)

    ReplyDelete
  4. Ok........I have a question..........is there going to be quiz.......??????

    Great blog....I always learn so much.

    ReplyDelete
  5. I love this stuff!! the science and technology is like that out of the movies. I love the information that you provide and the infused sense of humor to help get it across.

    Thanks!

    ReplyDelete
  6. The music goes so well with the read /:-)

    ReplyDelete
  7. I find this fascinating and am coming back tomorrow to read more. Am off to bed for now. Am a little tired after a long day.

    I have actually heard of this before....'tis amazing. You're are so right ....each day there is something else.

    ReplyDelete
  8. haaaa music goes with the bugs...

    ReplyDelete
  9. fascinating...

    you always find the most interesting things.....

    :)

    ReplyDelete
  10. wow, this is truly fascinating. Very interesting blog.......... very informative. ty so much for sharing!

    ReplyDelete
  11. I too love amber inclusions. I have a piece with an insect in that Phil gave me when we were living in East Africa. It really is beautiful!

    ReplyDelete
  12. I'm back again. I have always understood that basically this is what made up amber. But now I am wondering just what amber actually is. Is it perhaps honey or some substance like that which has become the substance over the many years.

    Fascinating blog John.

    ReplyDelete
  13. Sort of a sync, haha, I had a bug similar to these stuck in the grease on top of my cooker this morning ;)

    ReplyDelete
  14. Way cool - I will have to show this one to my son. He will love it. He's always been into dinos and anything that was involved in their life.

    ReplyDelete
  15. I'm going to come back and read this , love the Elvis song , right now I am going to watch American Idol lol , but I will be back to read this I promise :)

    ReplyDelete
  16. It actually reminds me of the movie where they made a raptor's echoing chamber..funny how things become reality...amazing how they can make it so large and see every detail :)

    ReplyDelete
  17. just think someday.........could be a real live Jurrasic Park.....muuuahhhhh

    ReplyDelete
  18. How do you know all about those technologies?
    Very informative post and goes good with the great music of Elvis.

    ReplyDelete
  19. John I did come back and read it all, very fascinating , here you go >

    ReplyDelete